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Stokes flow is analysed for a combination body, consisting of a sphere attached 
to a slender body, translating along its axis in an infinite and otherwise un- 
disturbed fluid. The cross-section of the after-body, or tail, is circular; the radius, 
while not necessarily constant, is small compared with the radius of the spherical 
head. The tail is represented by a distribution of Stokeslets of strength per unit 
length P(z),  located and directed along its axis. The interactive effect of head- 
tail attachment is manifested by the presence of image singularities located 
within the sphere. The image system for a single tail Stokeslet must be such that 
the no-slip condition is satisfied on the surface of the sphere. It is shown that 
this system consists of a Stokeslet, a Stokes doublet (stresslet only) and a source 
doublet located a t  the image point. The strength F(x) is obtained by applying the 
no-slip condition to the combination body. The solution follows the lines of 
traditional slender-body theory, an expansion being performed in ascending 
powers of the reciprocal of the logarithm of the aspect ratio. The integral force 
parameters and F(z )  are obtained to second order. The interactive effect is 
assessed, and the results are discussed in the context of a sedimenting micro- 
organism, such as a spermatozoon. The drag on the combination body is shown 
to be less by around 10 yo than the sum of the drags on an isolated sphere and tail. 
This drag, for a sperm-shaped body, is divided approximately equally between 
head and tail. 

1. Introduction 
An analysis of low-Reynolds-number flow past a combination body consisting 

of a sphere attached to a slender body is of both fundamental and applied 
interest. It incorporates slender-body theory into a study of flow about a more 
generally shaped body, and it provides an improved description of the passive 
sedimentation of a uniflagellated micro-organism, such as a spermatozoon. Such 
a study also has some qualitative bearing on resistive-force theories of flagellar 
locomotion, suggesting how the presence of an attached head affects the local 
forces per unit length along the tail. In this paper we consider a sphere of radius a 
attached to a straight slender rod of radius R and length 21. The combination 
body, spherical head forward, translates with velocity U along its axis in an 
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FIGURE 1. The combination body. 

otherwise undisturbed fluid of infinite extent. We assume that the Reynolds 
number of the flow is sufficiently small that the Stokes equations apply; since 
we are primarily concerned with the forces acting on the body, the need for a,n 
outer, Oseen solution does not therefore arise. We also assume R/21< 1, i.e. the 
after-body, or tail is slender, and R/a < 1. These assumptions are appropriate 
for the applications mentioned above, and they enable us to incorporate the 
methods of slender-body theory in the analysis. We shall require here that the 
cross-section of the tail remain circular, though not necessarily of constant 
radius. The analysis can, however, be extended to straight slender rods of 
arbitrary cross-section, using the technique introduced by Batchelor (1 970). 

2. The image system 
Since the tail is slender and the body motion is a simple translation along its 

axis, the effect of the tail on the fluid may be approximately assessed by con- 
sidering a distribution of Stokeslets located along and directed parallel to the 
tail axis. The strengths of these Stokeslets must be such that the no-slip condition 
is satisfied on the surface of the combination body. This is not possible on the 
spherical portion of the body unless additional image singularities are introduced. 
Collins (1954) presented a method for determining a perturbed axisymmetric 
flow due to placing a sphere in a general unbounded Stokes flow field. Using this 
method, we can determine the flow field due to a single Stokeslet on the rod axis, 
thence by integration the effect of the entire rod. 

Introduce a cylindrical co-ordinate system ( r ,  $, z )  fixed in the body, with the 
positive-z axis directed along the after-body axis, cf. figure 1. Consider a Stokeslet 
of unit strength located on t,he tail axis at z = z* and directed in the negative-z 
direction. The stream function for the flow field due to this singularity is de- 
termined and decomposed, cf. appendix A, as 

a3r2(z% - a2) (zz* -a2) a3r2(2$ - @)2 

167r,uz2,[r2z2, + (zx* - u ~ ) ~ ] % ’  + (1) - 
87rpz2,[r2z: + (zz* 

The first term in (1) is the original unit Stokeslet. The remaining three terms, 
which constitute the image system for this single Stokeslet, are, respectively, 
(i) a Stokeslet at the inverse point z = a2/z*, r = 0,  with strength a(3z2, -a2)/2z2,, 
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directed in the positive-z direction, (ii) a Stokes doublet (stresslet only) a t  the 
inverse point, with strength a3(2: - a2)/z4,, directed in the x direction, and (iii) a 
source doublet a t  the inverse point, with strength ~ ~ ( 2 ;  - a2)2/225,, directed in the 
x direction. 

As a consistency check on (1) ,  we can consider the limit z* -a  -+ 0,  in which 
case the flow between the Stokeslet and sphere resembles that outside a plane 
boundary. Taking 2 = z--a and h = z* -u, we obtain 

r.2 r2 

8mp[r2 + (2 - h)2]4-  8mp[r2 + (2 + h)2]h ' 
2h2r.2 

8n-,u[r2 + (2 + h)2]3 
( 2 )  

2hr2(2 + h)  

8m,u[r2 + (2 + h)2]s 
+ - 

as h -+ 0. Equation ( 2 )  agrees with the decompositioiz of the image system for 
a Stokeslet outside a no-slip plane wall, cf. Blake (1971) .  

The velocity field in the fluid is obtained from (1) as 

V, = r-1 agiaz 
r(z  - z*) 

8mp[r2 + ( x  - 2*)2]6 

&(z - z*) 

8mp[r2z; + (zz* - a2)2]4 
= -  + 

3arz,(z2,-a2) (zz*-a2)  (r2+x2-a2) + 
16m,u[r2z$ + (zz* 

f (Snp)-l G(r ,  z ;  z*),  ( 3 )  

=-?-la @.jar 
2 r2 2a 

a3r2-a(z$---az) (r2+x2-a2) - 3az2,r2(z$-a2) (r2+z2-a2) 

+ + 
8mp[r2 + ( z  - ~ + ) 2 ] 6  

- -  - 
8mp[y2 + ( Z  - Z*)2]4 8np[r2zi + (zz* - 

- 
8mp[r2z2, + (zz* - a2)2]8 16mp[r2z2* + (zz* - u ~ ) ~ ] %  

E (Snp)- lH(r ,  z ;  z*) ,  (4) 

where v, and V, are the radial and axial components of velocity, respectively. 

3. Slender-body analysis 
We now regard the tail of the body a,s a continuous distribution of Stokeslets 

of strength per unit length F(z*),  a < z* < a + 21, located on the axis r = 0, and 
directed in the negative-z direction. The effects of this distribution, and of the 
uniform stream, are obtained by superposition: 

The no-slip condition on the tail surface is 

v, = 0 at r = R(z), a < z < a+21. (7) 
5 2 - 2  
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Substituting in (6)) we obtain the following integral equation for P(z):  

N .  J .  de Mestre and D.  F .  Katz 

( 8 )  
Since Rl2Z < 1 and Rla < 1, we have 

[ (I - ; + g) + 0 (:I2] 

where the limit in the final term must be valid to O(R/Z). In  the second term of 
(91, I ( z )  represents the contribution of the image system: 

a(aSz3 3z2)  In [ x(a + 21) - a2 4a2E(z + a)  k Z ( z  + a)2 [z(a + I) - a2] ] - z2[z(a + 21) - a21 + zZ[x(a + 21) - u2l2 
. I ( 2 )  = a(z - a)  

(10) 

(11) 

We now expand B(z) just as in classical slender-body theory, viz. 

P(z )  = s F ( ~ ) ( z )  + s ~ P ( ~ ) ( z )  + . . .@F(")(z) + .. ., 
where s = [In (2Z/R0)]-l, R, being a representative value of R(z), for example the 
mean. This expansion, to order n, is applicable to (9) provided that 

en = O [ ( R / I ) ~ ,  

We are in general interested in I 3 a. Thus, since In (2Z/R) increases much more 
slowly than the expansion could be carried to several orders. We shall, 
however, be interested in results to second order, since they embody the essential 
physics of the problem; i.e. they enable us to apply the no-slip condition to both 
the tail (first and second order) and head (second order) of the body. We obtain 

F(l) = 2n-,,!A U (  1 - 3a/2z + a3/2z3), (12) 

where 
H(l)(z, z*) = lim II(R, z ;  z * )  

R,/l-+O 

2 2a a ( 9 -  a2) (2; - a2) 
(14) (zz* - a2)3 ' 

+- + =-- 
1z-2*\ zz*-d 

It is noteworthy that, in classical slender-body theory for a rod, the equivalent 
of the final term in (9) does not contribute to P(z) until O(s3) .  Here, however, this 
term contributes to P)(Z), i.e. there is a second-order coupling of image and tail 
singularity strengths. The rather lengthy complete expression for .F2)(z) is given 
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in appendix B. Although i"(Q(z) is a well-behaved function of z, .V2)(z)  is logarith- 
mically singular a t  z = a + 21. In  order to integrate .W) (z )  with respect to z, we 
therefore adopt the procedure of Tillet (1970); i.e. we terminate the Stokeslets at 
z = zT, where Z-l(a+21-zT) = O ( @ ) .  Indeed, the integral force parameters, 
cf. Q 4, are insensitive to O(e2) variations in the precise location of zT. Notably, 
W ( z )  -+ 0 and Fa(,) -+ 0 as z + a, i.e. the image Stokeslets obviate any singular 
behaviour a t  the forward end of the tail. 

4. Force parameters 
The total drag 9 on the combination body is given by 

The first term in (15) is the familiar Stokes drag on an isolated sphere in a uniform 
stream. The second term is the corresponding reduction in drag on the spherical 
head of the combination body due to the internal image Stokeslets. The final 
term is the drag on the tail due to the axial Stokeslet distribution; this term and 
the force F(z ) ,  a < z < a +- 21, per unit length on the tail are dependent upon the 
image system via (8). Using (11)-(13), we can rewrite (15) as 

9 = 9+y7 

3 
(1 + 2a)2 q i  + 2a)3 q 1  + 2a)4  

s t ,  

3 - - 

- 3 
5( 1 + 2 ~ ) ~  

+ 

14( 1 + 

(1 + 2aI2 
4a-31n(1+2a)+ 

( 1 6 b )  

where CL = l/a, the subscripts s and t stand for 'sphere' and 'tail', respectively, 
and the expressions are correct to O(e2).  Note that the shape of the tail, viz. R(z), 
only influences the drag to O ( E ~ ) ,  as is the case for an isolated slender body. The 
effect of the image system on St is 0 ( e 2 ) ,  just as for a slender body near a plane 
wall, cf. de Mestre (1973). However, the images do produce an integrated effect 
O ( E )  on SS. 
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FIGURE 2.  Comparison of the drag 9 with Fz, the sum of the drags on the sub-bodies 
considered individually. --, including image system; - - -. excluding image system. 

5. Results and discussion 
We now present and discuss several pertinent computations. For the sake of 

clarity here, we shall consider a constant tail radius R,. 
(i) The total drag 9 on the combination body may be compared with Sz, 

the sum of the drags on an isolated sphere and on an isolated rod. The latter is 
simply 

9. = 6 ~ r p U  + 4 ~ , ~ 1 1 1 ( ~ +  0 * 8 0 7 ~ ~ ) ,  (17 )  

correct to O(e2). The second term in (1  7 )  is obtainable from the method of analysis 
here, just as in Batchelor (1970), an identical expression being obtained from 
Cox (1970). The effect af combining the two bodies is to retard the after and 
forward flows experienced by the sphere and rod, respectively. Thus we generally 
expect fl ,< Pz, with equality in the limits l/a + 0, 00. Curves of F/Fz vs. l/a 
must therefore possess minima, as indicated by the mathematical form of 
W ( z ) ,  cf. ( 1 2 ) .  Figure 2 illustrates this result. Note that for truly slender bodies, 
i.e. R,/21 5 0.01, the drag on the combination body is reduced at most by 
O( 10 yo) from that on the isolated bodies. Note also bhat, if the image singularities 
are neglected altogether, the error in 919. is not substantial, decreasing with 
R,/21. For a typical mammalian spermatozoon, we might expect H/a = 10 and 
R,/21 = 0.005, where the effective radius a is that, of a sphere with surface area 
equal to that of the sperm head and R, is an average tail radius. For these values, 
the error in F/Pz is only 1.2 yo. This suggests that in an analysis of flow about 
a more realistically shaped spermatozoon, for which the head is not spherical 
and R(z) is not constant, a first approximation might be to neglect the image 
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FIGURE 3. Comparison of the drag on the spherical head of the 
combination body with the total drag. 

system altogether. Since extension of the Collins method to non-axisymmetric 
heads is extremely difficult a t  best, this would represent a very significant 
simplification. We are at present engaged in such an analysis. 

(ii) The relative importance of the drags on the head and tail of the combination 
body may be assessed by considering the ratio 9J9, cf. figure 3. Note the sub- 
stantial reduction in the importance of the head drag for l/a > O(l0).  For the 
sperm-like values l/a = 10 and R,/21 = 0.005, the head contributes 46% of the 
drag. Thus, quantitative interpretation of sedimentation experiments may be 
significantly in error if the effect of the tail is excluded, cf. Katz & de Mestre 
(1974). 

(iii) In  existing resistive-force (or Gray-Hancock) analyses of spermatozoan 
locomotion, the effect of the head has been accounted for only approximately. 
The viscous drag and moment included have been those on an isolated head, 
translating and rotating with the propulsive velocities, linear and angular, of 
the organism. The resistive effects of the actual, attached head are therefore 
overestimated. In  figure 4 we have plotted the ratio Fs/6n,uaU. This ratio may 
be viewed as an upper bound (because the tail is straight) to the reduction in 
drag on the head of a motile swimming organism. Figure 4 indicates that the 
upper bound to this reduction does not differ appreciably from the case of an 
isolated head, as might be expected since the reduction is O ( B ) ,  cf. (16). 

(iv) The resistive-force approach to spermatozoan locomotion has thus far 
neglected the influence of the head on the local resistances per unit length 
acting on an undulating tail. Indeed, account has not yet been taken of the 
influence of the finite length of the tail on these resistances. It is, therefore, of 
some interest to consider the local longitudinal force per unit length, i.e. Stokeslet 
strength, acting on the tail of our combination body. There exists a shielded 
region immediately behind the head in which this strength is significantly 
reduced from that on an isolated tail. The extent of this region suggests how im- 
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FIGURE 4. Comparison of the drag on the spherical head of the Combination body with the 
drag on an identical, isolated sphere. 
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FIGURE 5. Comparison of the Stokeslet strength on the tail of the combination body with 
.F0(z), the Stokeslet strength on an isolated tail; l/a = 10, Ro/21 = 0.01. 

portant the shielding effect might be for a motile tail on an organism cum head. 
We therefore compare F(z ) ,  along the tail of the combination body, with Fo(z), 
the Stokeslet strength on an isolated, longitudinally translating tail. The latter 
is also obtainable from the analysis here, as in Batchelor (1970), as 

correct to O(e2). Figure 5 illustrates these strengths for the sperm-like body, 
the Stokeslets having been terminated a t  the ends of the tail, as mentioned 
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earlier, to avoid singularities. Note that along the first fifth of the tail of the 
combination body, i.e. four head radii, the strength is reduced by an average of 
approximately 50% from that on an isolated tail. We might argue, therefore, 
that along approximately this portion of the tail of a motile organism, there 
may be a need to introduce varying coefficients of resistance. Of course, account 
would have to be taken of a counter-effect, the thickening of the tail a t  its forward 
end, viz. the midpiece. However, the precise nature of the variation, in both 
longitudinal and normal coefficients, is a problem whose answer really cannot 
be suggested from the analysis here. 

D.F.K. is grateful for the support of a Population Council Postdoctral 
Fellowship. 

Appendix A 

flow equation D4$o = 0, where 
Suppose that $o(p, 8) is a stream function satisfying the axisymmetric Stokes 

0 2  2 a (L 2) 
ap2 p2 a8 sin8a8 

and (p, 8, @) are spherical polar co-ordinates. If $o is the stream function for some 
flow in an unbounded fluid, then it can be shown, cf. Collins (1954), that the 
perturbed stream function due to the presence of a sphere of radius a is given by 

This solution produces zero velocity on the sphere and satisfies D4$ = 0, holding 
for singular and non-singular functions $o. 

For a Stokeslet a t  (z*, 0, 0 ) ,  with unit strength and directed in the inward radial 
direction, 

The solution for such a Stokeslet outside a sphere, with centre at the origin, is 
therefore 

' = 877p[p2 sin2 8 + (p cos I9 - 2*)2]4 - 8np[z2,p2 sin2 8 + (z,p cos 8 - a2)2]3 

$o = p2 sin2 8/8np[p2 sin28 + (p cos 8 - z,)2]S. (A 2) 

p2 sin2-8 up2 sin2 8 

(A 3) 
- apZsin28(22, -at) (pz-az) 

16np[zfp2 sin2 8 + (z,p cos 8 - a2)2]8 * 

When (A 3) is expressed in cylindrical polar co-ordinates ( r ,  $, z )  it  becomes 

r2  ar2 
877p[r2 + ( z  - ~ * ) ~ ] 4 -  877p[z$ r2 + (zz* - a2)2]S $(r ,z)  = 

(A 4) 
- arz(z2, - a2) (r2 + 22 - a2) 

16np[r2z2, + (zz* - a2)2]% ' 

Equation (A 4) can be separated into the expressions for the four basic singularities 
given in (1) .  
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Appendix B 
The complete expression for F a (  z ) ,  the second-order component of the 

Stokeslet strength F(z ) ,  can be writt'en as 

+ ( 5  - 6q2 + 3q4) In (1 + 2a) 

where 7 :E z/u and a = l/a. 
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